Survey Results of Current Standards for Verifying Patient Positioning and Dose Delivery in IMRT

H Mehrens, D Followill, S F Kry
Imaging and Radiation Oncology Core (IROC) Houston QA Center
The University of Texas, M.D. Anderson Cancer Center, Houston, Texas

Purpose:
To describe and report results from a survey of current standards for verifying patient positioning and dose delivery in IMRT.

Methods:
The Imaging and Radiation Oncology Core (IROC) monitors sites that participate in NCI-sponsored trials through annual output checks and anthropomorphic phantom irradiations. To track changes of site’s personnel, machines, and treatment modalities, IROC maintains a Facility Questionnaire. This questionnaire is sent annually (or more often as needed) to every institution to allow for updates to the institution’s status.

The survey was included as part of IROC-Houston’s Facility Questionnaire. The survey was available to 2,681 sites. Results were limited to those institutions that updated the questionnaire in 2017, resulting in 1,455 respondents. The purpose of this survey was to understand the use of treatment positioning verification and delivered dose verification in IMRT. The survey was broken into two main sections. First, two questions about the methods and frequency of patient imaging for setup verification. Second, eight questions about the methods, tools, and interpretation of patient specific IMRT dose delivery quality assurance (QA).

Results:
The majority of responding sites were from the United States and Canada (91.9%).

Figure 1 depicts the distribution of answers related to patient positioning. Verification of patient positioning was performed mostly by MV imaging (91.3%) and/or kV imaging (86.7%) followed by CT/CBCT (74.8%) and only a small percentage of sites utilized other techniques (10.4%).

Figure 2 shows that the most common tools for dose verification are a 2D diode array (52.8%), point(s) measurement (39.0%), EPID (27.4%), and 2D ion chamber array (23.9%). Many sites had and used multiple devices; the number of standard tools utilized by sites was most often one (40.1%), but was commonly two (33.5%) and even three (18.5%). Responders reported using up to 7 different tools for this purpose.

Results (cont.):
If IMRT QA did not pass, we provided nine possible next steps to choose from in our survey. Sites were given the opportunity to rank them on a scale of one to nine with one denoting the first strategy taken. These strategies are ordered in Table 9 according to the average rank order of the strategy (for places employing that strategy). The highest average rank selection was to re-measure with the same setup, which had an average position ranking of 1.1 with 81.4% of sites placing this at rank one; 90.4% of facilities employ this strategy. The second highest average rank selection was to move to a new calculation point and re-measure (54.9%) and had an average ranking of 2.1 with rank two (41.3%) holding the majority of the selections. Strategies became less clearly established in the community after this: the third highest average rank selection was “other”, i.e., not one of the 9 options provided.

Conclusion:
The survey provides a snapshot of the current state of patient positioning and dose verification for IMRT radiotherapy. This provides guidance, at least in terms of consensus practice, for clinics across the county.

Support:
Supported by grants CA180803 and CA214526 awarded by the NCI.